Identifying treatment effects using trimmed means when data are missing not at random

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach to Estimation of Response Probabilities when Missing Data are Not missing at Random

Often the probability of responding depends directly on the outcome value. This case can be treated by postulating a parametric model for the distribution of the outcomes before nonresponse and a model for the response mechanism. The two models define a parametric model for the joint distribution of the outcomes and response indicators, and therefore the parameters of these models can be estima...

متن کامل

Optimal Design When Outcome Values Are Not Missing at Random

The presence of missing values complicates statistical analyses. In design of experiments, missing values are particularly problematic when constructing optimal designs, as it is not known which values are missing at the design stage. When data are missing at random it is possible to incorporate this information into the optimality criterion that is used to find designs; Imhof, Song, and Wong (...

متن کامل

imputation in missing not at random snps data using em algorithm

the relation between single nucleotide polymorphisms (snps) and some diseases has been concerned by many researchers. also the missing snps are quite common in genetic association studies. hence, this article investigates the relation between existing snps in dnmt1 of human chromosome 19 with colorectal cancer. this article aims is to presents an imputation method for missing snps not at random...

متن کامل

Bias of complete-case analysis of williams square crossover designs when data are missing not at random

A Williams square is a particular type of Latin square that is widely used for crossover trials when comparing t treatments over t treatment periods. As with most forms of clinical trials, crossover trials do not always obtain all the observations prescribed in the design and the analyst has to deal with missing data. An intentionto-treat (ITT) analysis would analyse the available observations ...

متن کامل

When data are not missing at random: implications for measuring health conditions in the Behavioral Risk Factor Surveillance System

OBJECTIVES To examine the effect on estimated levels of health conditions produced from large-scale surveys, when either list-wise respondent deletion or standard demographic item-level imputation is employed. To assess the degree to which further bias reduction results from the inclusion of correlated ancillary variables in the item imputation process. DESIGN Large cross-sectional (US level)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pharmaceutical Statistics

سال: 2021

ISSN: 1539-1604,1539-1612

DOI: 10.1002/pst.2147